
Chapter 3: Linear Regression

 Why do regression?
 Prediction and understanding.
 Linear regression is used as long

as the coefficients enter in linearly
like, 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2

 But not, 𝑎𝑎0 + 𝑒𝑒𝑎𝑎1𝑥𝑥



Estimating the coefficients 

 Data look like this, (x1,y1), (x2,y2),…, (xn,yn)
 Fit the linear model, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖
 Choose estimates, 𝛽̂𝛽0 𝛽̂𝛽1, such that the sum of squared residuals, 
𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑥𝑥𝑖𝑖 , are minimized.

 Residual Sum of Squares = RSS =𝑟𝑟12 + ⋯+ 𝑟𝑟𝑛𝑛2

 The least squares estimates can be found by applying some 
standard calculus, which we do for the general case in the next 
slide.



Least Squares Estimates
 The general linear model is, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖, for i=1,…,n
 In matrix notation this is written, y=Xβ, where y is n×1 and β is 

(p+1)×1 and X is n×(p+1) (X called the design matrix)

 Fact: ℎ 𝒙𝒙 = 𝒂𝒂 − 𝒄𝒄𝒄𝒄 𝑇𝑇𝐾𝐾 𝒂𝒂 − 𝒄𝒄𝒄𝒄 then 𝑑𝑑ℎ(𝒙𝒙)
𝑑𝑑𝒙𝒙

= −2𝒄𝒄𝑇𝑇𝐾𝐾(𝒂𝒂 − 𝒄𝒄𝒄𝒄)

 RSS=(y-Xβ)T(y-Xβ)=(y-Xβ)TI(y-Xβ), now use Fact to find 
derivative


𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅
𝑑𝑑𝜷𝜷

= −2𝑿𝑿𝑇𝑇 𝒚𝒚 − 𝑿𝑿𝜷𝜷 , set this to 0 and solve for β

 𝑿𝑿𝑇𝑇 𝒚𝒚 − 𝑿𝑿𝜷𝜷 = 0
𝑿𝑿𝑇𝑇𝒚𝒚- 𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷=0
𝑿𝑿𝑇𝑇𝒚𝒚= 𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷

 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒚𝒚= 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷
 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒚𝒚=�𝜷𝜷



Variance Estimates of the least squares parameters
 Facts: 
 1. 𝐸𝐸 𝑎𝑎𝑇𝑇𝑦𝑦 = 𝑎𝑎𝑇𝑇𝐸𝐸 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑉𝑉𝑉𝑉 𝑎𝑎𝑇𝑇𝑦𝑦 = 𝑎𝑎𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦 𝑎𝑎
 2. 𝐴𝐴𝑇𝑇 −1 = 𝐴𝐴−1 𝑇𝑇

 3. 𝐴𝐴𝐴𝐴 𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇

 �𝜷𝜷 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒚𝒚
 𝑉𝑉𝑉𝑉𝑉𝑉 �𝜷𝜷 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉 𝒚𝒚 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇 𝑇𝑇 , by Fact 1

= 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇 𝑇𝑇𝜎𝜎2, since 𝜎𝜎2 is a constant
 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇 𝑿𝑿 𝑿𝑿𝑇𝑇𝑿𝑿 −1 𝑇𝑇 𝜎𝜎2, by Fact 3
 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇 𝑿𝑿 𝑿𝑿𝑇𝑇𝑿𝑿 𝑇𝑇 −1 𝜎𝜎2, by Fact 2
 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝑿𝑿 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝜎𝜎2, by Fact 3
 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1 𝜎𝜎2, since 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝑿𝑿 = 𝐈𝐈

where σ= 1
𝑛𝑛−𝑝𝑝−1

𝑅𝑅𝑅𝑅𝑅𝑅



How to solve for 𝛽̂𝛽

 Although the equation above suggests that we would use the 
inverse of (XTX)-1 to find the estimates of β in practice this would 
not be done. If the condition number of XTX is very large then the 
solution to the Linear equations above will be sensitive to round off 
errors and these will be magnified if we simply take the inverse of 
XTX. 

 Rather you should use methods with orthogonal factorization, 
partial pivoting and compact elimination, which I had to do in the 
old days (page 463 of Mueller, L.D., F. González-Candelas and V.F. 
Sweet, 1991. Components of density-dependent population 
dynamics: models and tests with Drosophila. The American 
Naturalist 137: 457). 

 Nowadays, thanks to R we can use functions like "solve" that will 
implement these techniques.



Example of solving linear equations the wrong way

H10<- NULL #create an ill-conditioned Hilbert matrix. The condition number 
of the 10x10 matrix if 35 x 106, while the condition number for the 
identity matrix is 1. Condition number=||H10||1 ||H10-1||1
n<- 10
for (i in 1:n){ 
temp<- NULL 
for (j in 1:n) 
temp<- c(temp,1/(i+(j-1))) 
H10<- rbind(H10,temp)} 
a<- 1:n #This is going to be the unknown vector 
b<- H10%*%a #This is the right side of the equation: H10%*%a=b 
sol.1<- solve(H10,b) #Solve for a 
#ANSWER: 
> sol.1 
[,1] 
[1,] 1.000000 
[2,] 2.000000 
[3,] 3.000009 
[4,] 3.999920 
[5,] 5.000381 
[6,] 5.998951 
[7,] 7.001725 
[8,] 7.998330 
[9,] 9.000878 
[10,] 9.999807 

Library(MASS)
H10.i<- ginv(H10)# Estimate the inverse of H10 
H10.i%*%b #Solve for a 
[,1]
[1,] 1.000002
[2,] 1.999910
[3,] 3.000945
[4,] 3.996272
[5,] 5.005708
[6,] 5.999289
[7,] 6.994882
[8,] 8.000046
[9,] 9.006133
[10,] 9.996813
Solve SSE = 8 e-06 
Inverse SSE = 122 e-06

H10

1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10
0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09
0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08
0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08
0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07
0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07
0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06
0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06
0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06
0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.05


Sheet1

		temp		1.00		0.50		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10

		temp		0.50		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09

		temp		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08

		temp		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08

		temp		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07

		temp		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07

		temp		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06

		temp		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06

		temp		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06		0.06

		temp		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06		0.06		0.05







Assessing Accuracy

 The residual standard error or RSE=σ, measure of the lack of fit.
 R2 is the proportion of explained variance.
 Let the total sum of squares (TSS) be ∑ 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 (if the feature 

variables provided no information to predict y, we would just use 
the average as our best guess.

 Then, 𝑅𝑅2 = 𝑇𝑇𝑇𝑇𝑇𝑇−𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇

 For a single independent variable R2=ρ2, where ρ is the correlations 
coefficient between X and Y.



Is there a relationship between the response and predictors?

 We can test all parameters; 𝐻𝐻0: 𝛽𝛽1 = ⋯ = 𝛽𝛽𝑝𝑝 = 0 with an F-test,
𝐹𝐹 = (𝑇𝑇𝑇𝑇𝑇𝑇−𝑅𝑅𝑅𝑅𝑅𝑅)/𝑝𝑝

𝑅𝑅𝑅𝑅𝑅𝑅/(𝑛𝑛−𝑝𝑝−1)
, which has Fp,n-p-1 distribution. Under the null 

hypothesis F~1. If any |β|>0, F>1.
 We can get these in R as: if F=2, n=50, and p=10, then 

pf(2,10,39) = 0.94
 Alternatively we could test if the last q predictors are 0 with, 𝐹𝐹 =

(𝑅𝑅𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑅𝑅)/𝑞𝑞
𝑅𝑅𝑅𝑅𝑅𝑅/(𝑛𝑛−𝑝𝑝−1)

where RSS0 is fit to the p-q predictors.

 Each F test will have a type-I error of 5%. However, examining the 
confidence interval on each parameter involves multiple testing

 Of course, if p>n then we can’t do these tests either.



Which variables matter?

 We could look at every possible model and assess their goodness 
of fit with Mallow’s Cp, Akaike information criteria, etc. These 
methods provide a penalty for adding superfluous variables.

 There are 2p different models to test. When p=20, there are over 
one million models. So, this is not practical.

 Systematic methods like forward and backward selection can be 
used, although backward selection can’t be used when p>n.



Model Fit

 In general R2 will not be a good indicator since it always increases 
as we add parameters to the model.

 In some cases plotting the data and model fit can reveal problems.
 In this figure sales using mostly

TV or radio seem to be
overestimated and sales using
both underestimated. This 
suggests a non-linearity the 
linear model can’t pick up.



Predictions

 Two ways to express uncertainty in predictions.
 I. Confidence intervals , (c1,c2), to address how close �𝑌𝑌 is to f(X). 

Thus, upon repeated collections of data from this population we 
expect 95% of the predictions to include the true f(X). 

 II. Prediction intervals, (p1,p2), which also include the irreducible 
error. Thus, upon repeated collections of data from this population 
we expect 95% of the predictions, �𝑌𝑌, to include the true Y. 



Qualitative Predictors

 Two levels, xi = sex of ith person where males (i=0) or females 
(i=1).

 Or there could be multiple levels: food level, low (i=0), medium 
(i=1) or high (i=2). Thus, yi, could be the fecundity of a female 
receiving the ith level of food.

 For this last example the actual model would be for female j at 
food level i:

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛿𝛿𝑖𝑖𝛽𝛽𝑖𝑖 + 𝜖𝜖𝑗𝑗
 Where δi =0 if i=0 and 1 otherwise. Thus, the model takes on 3 

forms: 𝛽𝛽0 when i=0, 𝛽𝛽0 + 𝛽𝛽1 when i=1, and 𝛽𝛽0 + 𝛽𝛽2 when i=2. 



Extending the linear model

 Removing completely additive effects
𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋1𝑋𝑋2
= 𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽3𝑋𝑋2 𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2
= 𝛽𝛽0 + �𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2

 The effect of X1 on Y now depends on the value of X2 since �𝛽𝛽1
depends on the value of X2.

 We can also make Y nonlinear by using polynomials, 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 +
𝛽𝛽2𝑋𝑋12

 However, 𝑋𝑋1 and 𝑋𝑋12 are not independent.



Problem: non-linearity

 We may detect 
non-linearities and 
non-constant 
variances by 
looking at the 
residuals, e.g. 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖
as a function of �𝑦𝑦𝑖𝑖.



Problem: correlated errors

 Error terms are assumed to be independent.
 This assumption can be violated if,

(1) Some samples are duplicated
(2) Samples come from an autocorrelated time series.

 Irreducible variance, Var(ε) will be under or over estimated.



Problem: non-constant variance of error terms

 Variances change with Y. The variance may often be proportional 
to the magnitude of Y. To shrink the larger values of Y use a logY
or 𝑌𝑌. 



Problem: outliers

The outlier (unusually high response value) in the left most figure has little effect on the fitted 
regression. But the RSE is inflated to 1.09 from 0.77 (without the outlier). The studentized 
residuals on the right could be used to remove any that are greater than |3| (should only be 
0.3% of the sample). Studentized = Residual divided by the standard deviation.

Removing points must be done with care and well documented.



Problem: leverage points
 High leverage applies to unusual values of the predictor variable.
 High leverage values will often affect the regression fit.

 Models with a single predictor, leverage for observation-i = 1
𝑛𝑛

+
𝑥𝑥𝑖𝑖−𝑥̅𝑥 2

∑𝑗𝑗=1
𝑛𝑛 𝑥𝑥𝑗𝑗−𝑥̅𝑥

2, the individual leverage ranges from 1/n to 1, averaged 

over all observations equals (p+1)/n



Example: leverage points



Problem: collinearity
 When predictor variables are highly correlated.
 Credit card balance may depend on age, credit card limit and credit 

rating. But rating and credit card limit are tightly correlated.
 Thus, small changes in the data can dramatically change the least 

squares estimates, standard errors of the �𝜷𝜷 are larger.



Detecting and Fixing Multicollinearity

 Look at the correlation matrix. But there can be multicollinearity 
between 3 or more variables that won’t show up in the correlation 
matrix.

 Compute the Variance Inflation Factor (VIF) for each predictor-j,
1

1 − 𝑅𝑅𝑋𝑋𝑗𝑗|𝑋𝑋−𝑗𝑗
2

 Where 𝑅𝑅𝑋𝑋𝑗𝑗|𝑋𝑋−𝑗𝑗
2 is R2 obtained from regressing Xj on all the remaining 

predictors.
 Eliminate essentially redundant variables or combine several into a 

single variable.
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