Chapter 3: Linear Regression

Why do regression?
Prediction and understanding.

Linear regression is used as long
as the coefficients enter in linearly
like, ag + ayx + a,x?

But not, aq, + e%*
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Estimating the coetticients

+ Data look like this, (xy,¥1), (X5,V¥5),..., (X,,V,)

+~ Fit the linear model, y; = By + B1x;

» Choose estimates, S, ,, such that the sum of squared residuals,
r; = (y; — Bo — B1x;), are minimized.

+ Residual Sum of Squares = RSS =rf + -+ 12

+ The least squares estimates can be found by applying some
standard calculus, which we do for the general case in the next
slide.



Least Squares Estimates

+ The general linear model is, y; = By + B1x;1 + -+ + Bpxyp,, fOr i=1,...,n

+ In matrix notation this is written, y=XB, where y is nx1 and B is
(p+1)x1 and X is nx(p+1) (X called the design matrix)

+ Fact: h(x) = (a— cx)"K(a — cx) then dhix) —2c"K(a — ¢cx)

+ RSS=(y-XB)"(y-XB)=(y-XB)'I(y-XB), now use Fact to find
derivative

2 dg—;S = —2X"(y — XpB), set this to 0 and solve for B

« X'(y—XB) =0
X"y- XTXB=0
XTy= XTXpB

» (XTX)"1XTy= (XTX)"1XTXpB

+ (XTX)'XTy=p



Variance Estimates of the least squares parameters

+» Facts:

+ 1. E(a’y) = a’E(y)and Var(a'y) = a'Var(y)a

¢ 2. (A7) 1= (AT

+ 3. (AB)T = BTAT

» B=X'X)"1XTy

« Var(B) = XTX) X XTVar(y)[(XTX)~1XT]T, by Fact 1
= (XTX) " 1XT[(X"X)"1X"]"0%, since g% is a constant

» = XTX) I XT{X[(X"X)"1]"}o?, by Fact 3

» = (XTI XT{X[(X"TX)T]" 1102, by Fact 2

« = (XTX)"1XTX (XTX) 162, by Fact 3

+ = (XTX)"1o?, since (XTX)"1XTX =1

where G=\/ LRSS
n—-p—1




How to solve for ﬁA

+ Although the equation above suggests that we would use the
inverse of (X™X)! to find the estimates of B in practice this would

not be done. If the condition num
solution to the Linear equations a
errors and these will be magnifiec
XTX.

ber of XX is very large then the
bove will be sensitive to round off

if we simply take the inverse of

» Rather you should use methods with orthogonal factorization,
partial pivoting and compact elimination, which I had to do in the
old days (page 463 of Mueller, L.D., F. Gonzalez-Candelas and V.F.
Sweet, 1991. Components of density-dependent population
dynamics: models and tests with Drosophila. The American

Naturalist 137: 457).

+ Nowadays, thanks to R we can use functions like "solve" that will

implement these techniques.



“xample of solving linear equations the wrong way

H10<- NULL #create an ill-conditioned Hilbert matrix. The condition number Library(MASS)

of the 10x10 matrix if 35 x 108, while the condition number for the H10.i<- ginv(H10)# Estimate the inverse of H10

identity matrix is 1. Condition number=||H10]||; ||H10||,4 H10.i%*%b #Solve for a

n<- 10 [,1]

for (iin 1:n){ [1,] 1.000002

temp<- NULL [2,] 1.999910

for (jin 1:n) [3,] 3.000945

temp<- c(temp,1/(i+(j-1))) [4,] 3.996272

H10<- rbind(H10,temp)} [5,] 5.005708

a<- 1:n #This is going to be the unknown vector [6,] 5.999289

b<- H10%*%a #This is the right side of the equation: H10%*%a=b [7,] 6.994882

sol.1<- solve(H10,b) #Solve for a [8,] 8.000046

#ANSWER: [9,] 9.006133

> sol.1 [10,] 9.996813

[,1] Solve SSE = 8 e-06

[1,] 1.000000 Inverse SSE = 122 e-06

[2,] 2.000000

[3,] 3.000009 H10

Eg’} gggggg? 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10

[6’] 5-998951 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09

[7’] 7'001725 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08

[8’] 7.998330 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08

[9’] 9.000878 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07

[1’ ] 5.999807 0.17 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07
' 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06

0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06

0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06
0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.05



Sheet1

		temp		1.00		0.50		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10

		temp		0.50		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09

		temp		0.33		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08

		temp		0.25		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08

		temp		0.20		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07

		temp		0.17		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07

		temp		0.14		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06

		temp		0.13		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06

		temp		0.11		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06		0.06

		temp		0.10		0.09		0.08		0.08		0.07		0.07		0.06		0.06		0.06		0.05






Assessing Accuracy

+ The residual standard error or RSE=c, measure of the lack of fit.

+ RZ? is the proportion of explained variance.

+ Let the total sum of squares (TSS) be }.(y; — y)? (if the feature
variables provided no information to predict y, we would just use
the average as our best guess.

TSS—RSS
+ Then, R? =
TSS

+ For a single independent variable R?=p?, where p is the correlations
coefficient between X and Y.




Is there a relationship between the response and predictors?

+ We can test all parameters; Hy: p; = -+ =, = 0 with an F-test,

= ISSZRDP which has F, ., , distribution. Under the null
RSS/(n-p-1) p,N=p

hypothesis F~1. If any |B|>0, F>1.

+ We can get these in R as: if F=2, n=50, and p=10, then
pf(2,10,39) = 0.94

+» Alternatively we could test if the last g predictors are 0 with, F =

(RSSo—RSS)/q L ) _
RSS/(n—p-1) where RSS, is fit to the p-g predictors.

+» Each F test will have a type-I error of 5%. However, examining the
confidence interval on each parameter involves multiple testing

+» Of course, if p>n then we can’t do these tests either.




Which variables matter?

+ We could look at every possible model and assess their goodness
of fit with Mallow’s C,, Akaike information criteria, etc. These
methods provide a penalty for adding superfluous variables.

+ There are 2P different models to test. When p=20, there are over

one million mod

+» Systematic met
used, although

els. So, this is not practical.
nods like forward and backward selection can be

packward selection can’t be used when p>n.



Model Fit

» In general R2 will not be a good indicator since it always increases
as we add parameters to the model.

+ In some cases plotting the data and model fit can reveal problems.

+» In this figure sales using mostly
TV or radio seem to be
overestimated and sales using
both underestimated. This
suggests a non-linearity the
linear model can’t pick up.

4+ Sales

~ Radio




Predictions

+~ Two ways to express uncertainty in predictions.

+ I. Confidence intervals , (c,,c,), to address how close Y is to f(X).
Thus, upon repeated collections of data from this population we
expect 95% of the predictions to include the true f(X).

+ II. Prediction intervals, (p4,p,), which also include the irreducible
error. Thus, upon repeated collections of data from this population
we expect 95% of the predictions, Y, to include the true Y.



QQualitative Predictors

+ Two levels, x; = sex of jith person where males (i=0) or females
(i=1).

+» Or there could be multiple levels: food level, low (i=0), medium
(i=1) or high (i=2). Thus, y;, could be the fecundity of a female
receiving the jth level of food.

+» For this last example the actual model would be for female j at
food level i:

Vij = Po + 0ifi + €;

+ Where ¢, =0 if /=0 and 1 otherwise. Thus, the model takes on 3

forms: g, when i=0, 8, + ; when i=1, and B, + 8, when i=2.



Extending the linear model

+ Removing completely additive effects
Y = fo + B1Xy + 62Xz + B3X1 X
= Bo + (B1 + B3X2)X1 + B2X;
= Bo + B1X1 + B2X;
+ The effect of X; on Y now depends on the value of X, since £,
depends on the value of X..
« We can also make Y nonlinear by using polynomials, Y = S, + B, X; +
B X{
+ However, X; and X{ are not independent.



Problem: non-linearity

Residual Plot for Linear Fit

o
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» We may detect i .
non-linearities and
non-constant
variances by
looking at the
residuals, e.g. y; — y;
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FIGURE 3.9. Plots of restduals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals tndicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower”. There is little pattern in the

residuals.



Problem: correlated errors

+» Error terms are assumed to be independent.

+» This assumption can be violated if,
(1) Some samples are duplicated

(2) Samples come from an autocorrelated time series.
+» Irreducible variance, Var(e) will be under or over estimated.



Problem: non-constant variance of error terms

+» Variances change with Y. The variance may often be proportional

to the magnitude of Y. To shrink the larger values of Y use a

or \Y.
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Problem:

outliers

}.-’
2

The outlier (unusually high response value) in the left most figure has little effect on the fitted
regression. But the RSE is inflated to 1.09 from 0.77 (without the outlier). The studentized
residuals on the right could be used to remove any that are greater than |3| (should only be

Residuals

200

Fitted Values

Studentized Residuals

200

Fitted Values

0.3% of the sample). Studentized = Residual divided by the standard deviation.

Removing points must be done with care and well documented.




Problem: leverage points

+ High leverage applies to unusual values of the predictor variable.
+ High leverage values will often affect the regression fit.

+ Models with a single predictor, leverage for observation-i = %+
(x;—%)*
?:1(xj—f)2,

over all observations equals (p+1)/n

the individual leverage ranges from 1/n to 1, averaged

40 & D w 520
v =
° - s E
4 o 410
k:
= uy :;qq o o o
G2 8
e =] T
T - K g
o 8? ebg O e BRI oo e e e
olons s
T 6%
I I I I I T T
2 -1 0 1 2 0.00 0.05 0.0 0.15 020 0.25

X X3 Leverage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo walue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.



Example: leverage points
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Age

30 40 50 60 70 80

Problem: collinearity

+ When predictor variables are highly correlated.

+» Credit card balance may depend on age, credit card limit and credit
rating. But rating and credit card limit are tightly correlated.

+ Thus, small changes in the data can dramatically change the least
squares estimates, standard errors of the g are larger.

2000 4000 6000 8000

Limit

12000

Rating

2000 4000 6000 8000

Limit

12000

\ " | |
0.16 0.17 0.18 0.19 -0.1 0.0 0.1 0.2

.-SLimit



Detecting and Fixing Multicollinearity

+» Look at the correlation matrix. But there can be multicollinearity
between 3 or more variables that won’t show up in the correlation
matrix.

+» Compute the Variance Inflation Factor (VIF) for each predictor-j,
1

L= Riix

+ Where R)Z(le_jis R? obtained from regressing X; on all the remaining

predictors.

+» Eliminate essentially redundant variables or combine several into a
single variable.
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